2015년07월19일 22번
[임의 구분] 줄자를 이용하여 기울기 30°, 경사 거리 20m를 관측하였을 때 수평거리는?
- ① 10,00mm
- ② 11.55mm
- ③ 17.32mm
- ④ 18.32mm
(정답률: 49%)
문제 해설
연도별
- 2016년01월24일
- 2015년10월10일
- 2015년07월19일
- 2013년01월27일
- 2012년02월12일
- 2011년10월09일
- 2011년07월31일
- 2011년02월13일
- 2008년07월13일
- 2008년02월03일
- 2007년09월16일
- 2007년07월15일
- 2007년01월28일
- 2006년10월01일
- 2005년10월02일
- 2005년07월17일
- 2005년01월30일
- 2004년10월10일
- 2004년07월18일
- 2004년02월01일
- 2003년07월20일
- 2003년03월30일
- 2003년01월26일
- 2002년07월21일
- 2002년04월07일
- 2002년01월27일
먼저, 기울기 30°는 삼각형에서 밑변과 높이의 비율이 1:√3 인 30-60-90 삼각형을 의미합니다.
따라서, 삼각형에서 밑변은 20m이고, 높이는 밑변의 √3배인 20√3m입니다.
이제, 수평거리를 구하기 위해 삼각함수를 이용합니다.
cos 30° = 밑변 / 수평거리
cos 30° = 20 / 수평거리
수평거리 = 20 / cos 30°
cos 30°는 √3 / 2 이므로,
수평거리 = 20 / (√3 / 2)
수평거리 = 20 x 2 / √3
수평거리 = 40 / √3
이 값을 계산하면 약 17.32mm가 됩니다. 따라서, 정답은 "17.32mm"입니다.