2020년08월22일 13번
[전기자기학] 2장의 무한 평판 도체를 4cm의 간격으로 놓은 후 평판 도체 간에 일정한 전계를 인가하였더니 평판 도체 표면에 2μC/m2의 전하밀도가 생겼다. 이 때 평행 도체 표면에 작용하는 정전응력은 약 몇 N/m2 인가?
- ① 0.057
- ② 0.226
- ③ 0.57
- ④ 2.26
(정답률: 50%)
문제 해설
평판 도체 간의 거리는 4cm = 0.04m 이다. 전하밀도는 2μC/m2 이므로, 각 평판 도체의 전하량은 다음과 같다.
Q = 전하밀도 × 면적 = 2 × 10-6 C/m2 × 0.04 m2 = 8 × 10-8 C
평판 도체 간에 인가된 전계는 일정하므로, 전위차도 일정하다. 따라서 각 평판 도체의 전위차는 다음과 같다.
V = 전위차 = 전하량 / 총 전하에 대한 전위차 = Q / (ε0 × A / d) = Qd / (ε0 A) = 8 × 10-8 C × 0.04 m / (8.85 × 10-12 F/m × 0.04 m2) ≈ 0.0018 V
여기서 ε0은 진공의 유전율이다.
평행 도체 표면에 작용하는 정전응력은 다음과 같다.
σ = εE = ε(dV / d) = εV / d = εQd / (ε0 A d) = Q / (A ε0) ≈ 0.226 N/m2
따라서, 정답은 "0.226" 이다.
Q = 전하밀도 × 면적 = 2 × 10-6 C/m2 × 0.04 m2 = 8 × 10-8 C
평판 도체 간에 인가된 전계는 일정하므로, 전위차도 일정하다. 따라서 각 평판 도체의 전위차는 다음과 같다.
V = 전위차 = 전하량 / 총 전하에 대한 전위차 = Q / (ε0 × A / d) = Qd / (ε0 A) = 8 × 10-8 C × 0.04 m / (8.85 × 10-12 F/m × 0.04 m2) ≈ 0.0018 V
여기서 ε0은 진공의 유전율이다.
평행 도체 표면에 작용하는 정전응력은 다음과 같다.
σ = εE = ε(dV / d) = εV / d = εQd / (ε0 A d) = Q / (A ε0) ≈ 0.226 N/m2
따라서, 정답은 "0.226" 이다.
연도별
- 2022년04월24일
- 2022년03월05일
- 2021년08월14일
- 2021년05월15일
- 2021년03월07일
- 2020년09월26일
- 2020년08월22일
- 2020년06월06일
- 2019년08월04일
- 2019년04월27일
- 2019년03월03일
- 2018년08월19일
- 2018년04월28일
- 2018년03월04일
- 2017년08월26일
- 2017년05월07일
- 2017년03월05일
- 2016년08월21일
- 2016년05월08일
- 2016년03월06일
- 2015년08월16일
- 2015년05월31일
- 2015년03월08일
- 2014년08월17일
- 2014년05월25일
- 2014년03월02일
- 2013년08월18일
- 2013년06월02일
- 2013년03월10일
- 2012년08월26일
- 2012년05월20일
- 2012년03월04일
- 2011년08월21일
- 2011년06월12일
- 2011년03월20일
- 2010년07월25일
- 2010년05월09일
- 2010년03월07일
- 2009년07월26일
- 2009년05월10일
- 2009년03월01일
- 2008년07월27일
- 2008년05월11일
- 2008년03월02일
- 2007년08월05일
- 2007년05월13일
- 2007년03월04일
- 2006년08월06일
- 2006년05월14일
- 2006년03월05일
- 2005년08월07일
- 2005년05월29일
- 2005년03월06일
- 2004년08월08일
- 2004년05월23일
- 2004년03월07일
- 2003년08월10일
- 2003년05월25일
- 2003년03월16일
진행 상황
0 오답
0 정답